

St.Pious X Degree & PG College for Women

Autonomous College, Affiliated to OU Re-Accredited with A+ Grade by NAAC Snehapuri Colony, Nacharam, Hyderabad

B.Sc COURSE OUTCOMES(2025-26)

SEMESTER I

Remember, Understand, Apply, Analyze, Evaluate, Create: R, U, Ap, Az, E, C

Title of the Course: Differential Equations					
Sem- I	Credits: 5	Course Code – MAT101	Year/Group: I B.Sc (MPCS,MSCS,MSDS ,AI&ML) HPW: 6		
Course Outcomes Bloom				Blooms Level	
CO1	Discuss the key concepts of Differential Equations of first order and first degree			U	
CO2	Explain and solve the first order differential Equations			U,Ap	
CO3	O3 Implement and Examine the Higher order Linear Differential Equations			Ap,Az	
CO4	Classify and	solve the Partial Differential Eq	uations	U,Ap	

SEMESTER II

Title of the Course:Real Analysis					
Sem-II	Credits: 5 Course Code:MAT201 Year/Group: I B.Sc (MPCS,MSCS,MSDS,AI&ML) HPW: 6				
		Course Outco	omes	Blooms Level	
CO1	Discuss, solve and examine the key concepts of Real Numbers, Open Sets ,Closed Sets, Countable sets Real Sequences			U,Ap,Az	
CO2	Discuss, apply the key concepts of , Series, their converges, Limits and Continuity			U,Ap,Az	
CO3	Define, discuss and test the convergence theory in Differentiation			R,U,Az	
CO4		cuss and apply the concepts of R and Integrable Functions	iemann Integration, Refinement of Partitions,	R,U,Ap ,Az	

SEMESTER III

Title of the Course: Differential and Vector Calculus				
Sem- III	1- III Credits: 5 Course Code – MAT301 Year/Group: I B.Sc (MPCS,MSCS,MSDS,AI&ML) HPW:			
		Course Outco	omes	Blooms Level
CO1	Define and Discuss the key concepts of Partial derivatives, Homogeneous Euler functions			
CO2	Demonstrate and Examine the Taylor's theorem for a function of two variables			Ap,Az
CO3	O3 Define, Discuss and apply the concept of Line Integrals, Surface Integrals and Volume Integral			R,U,Ap,
CO4	Apply and D	Discuss the Principles of the Gr	adient ,Divergence and Curl	R,U,Ap,C

SEMESTER IV

	Title of the Course:Algebra				
Sem-IV	Credits: 5 Course Code:MAT401 Year/Group: II B.Sc (MPCS,MSCS,MSDS,AI&ML) HPW: 6				
		Course Outco	omes	Blooms Level	
CO1	Explain, Solve and examine the fundamental concepts of Groups, Subgroups and their properties			U,Ap,Az	
CO2	Demonstrate and construct the nature of Cyclic and Permutation Groups and Interpret Normal Subgroups, Homomorphism, their properties and applications U,Ap,C				
CO3	Normal Subgroups, Homomorphism, their properties and applications			U,Ap,Az	
CO4	Define and D Rings	viscuss the concept of Ideals,Quot	ient Rings,Euclidean Rings and Polynomial	R,U,Ap,Az	

	Title of the Course: Linear Algebra				
Sem-V	Credits: 5 Course Code:MAT501 Year/Group: III B.Sc (MPCS,MSCS,MSDS,AI&ML) HPW: 6			AI&ML)	
Course	Course Outcomes Blo				
CO1	Understanding Vector Spaces, Subspaces. Identify and construct bases for vector spaces, and calculate the dimension of a vector space based on the number of vectors in a basis. U, Ap				
CO2	Define and Discuss the concept of Linear Transformation ,Range Kernak , Rank Nullity and Composition of Linear Maps			R,U,Ap	
CO3	Discuss a Linear Map ,Linear Operations and Rank & Nullity matrix			R,U,Az	
CO4	Analyze the properties of eigenvalues and eigenvectors, such as their multiplicity (algebraic and geometric) and their role in determining matrix diagonalizability and apply the inner product Spaces to calculate angles,			U,Ap,E,Az	

SEMESTER VI

Title of the Course:Numerical Analysis				
Sem:VI	Credits: 5 Course Code:MAT601 Year/Group: III B.Sc (MPCS,MSCS,MSDS,AI&ML) HPW: 6			AI&ML)
Course (Outcomes			Blooms Level
CO1	Explain and Solve the systems of simultaneous linear equations using both direct methods like Bisection method & iterative methods. U,Ap,Az			
CO2	Understand and apply different interpolation methods (e.g., Lagrange interpolation, Newton's interpolation)			U,Ap,E
CO3	Apply numerical integration techniques (e.g., Trapezoidal rule, Simpson's rule) to approximate definite integrals			Ap,Az,E
CO4	Apply appropriate numerical methods to solve various differential equations.			Ap,Az,E

B.C.A COURSE OUTCOMES(2025-26)

SEMESTER I

	Title of the Course:Mathematical Foundations of Computer Science				
Sem-I	Credits: 4	Course Code:BSC101	Year/Group: I B.C.A	PW: 4	
		Course Ou	tcomes	Blooms Lev	/el
CO1	Describe and use the key concepts of Fundamentals of Logics, Set theory and Properties of the Integers			es of U,Ap	
CO2	Identify and Compare the Relations and Functions			U,Az	
CO3	Describe and relate the fundamental concepts of Matrices and Eigen values ,Eigen Vectors and Diagonolization			ttors U,Az	
CO4	Describe and relate Recurrence relations and Generating Functions.			U,Az	
CO5	Discuss, Con	npare and construct the Graph	Theory and Trees.	U,Az,C	

SEMESTER III

	Title of the Course:Applied Mathematics				
Sem-III	Credits: 4	Course Code:BSC301	Year/Group: II B.C.A	HPW: 4	
		Course Outc	omes		Blooms Level
CO1	CO1 Define, Solve and formulate Partial Differentiation in functions of two variables and Homogenous Functions				R,Ap,C
CO2	Explain and differentiate Differentiation of Composite Functions, Maxima and Minima of functions and Lagrange's Method of Undetermined Multipliers			U,Az	
CO3	Explain and Evaluate the concepts of System of Linear Equations, their solutions and Linear Independence			U,E	
CO4	Explain and Evaluate the concepts of Vector Spaces, Subspaces, Eigen Vectors and Eigen Values			U,E	
CO5	Explain and l Equations	Evaluate the concept of Diagonal	lization and Applications to Differential		U,E